Course Title	Nonlinear Dynamical Systems and Chaos	Course Code	PH***				
Dept./ Specialization	SH (Physics)	Structure (LTPC)	3	1	0	4	
To be offered for	UG/PG	Status	Core	•	Elect	ive	
Faculty Proposing the course	Tapas Sil	Туре	New • M			Modification	
Recommendation from	n the DAC	Date of DAC					
External Expert(s)							
Pre-requisite	Knowledge of ordinary differential equations and linear algebra	Submitted for a	pproval				
Learning Objectives	This course introduces fundamental concepts of dynamical systems, dynamical flows, non-linearity and chaos.						
Learning Outcomes	 Students will be able to analyze the behavior of dynamical systems (e.g. find periodic orbits and assess their stability, draw phase portraits, etc.). apply the techniques of nonlinear dynamics to physical processes analyze changes (i.e. bifurcations) to dynamical systems as system parameters are varied, analyze various chaotic applications in real-life systems, say engineering and biomedical applications, 						
Contents of the course (With approximate break-up of hours for L/T/P)	Introduction to Dynamical Systems: Overview, Examples and Discussion. (L1) One-dimensional flows: Flows on the line, Fixed points and stability, Population growth, Linear stability analysis, Saddle-node, Transcritical and Pitchfork; bifurcations, Flow on the circle. (L12+T3) Two-dimensional flows: Linear system; Phase Plane, Phase portraits, Phase space reconstruction; Fixed points and linearization, Limit cycles, Poincare-Bendixson theorem, Lienard systems, Bifurcations revisited: Saddle-node, Transcritical and Pitchfork bifurcations, Hopf bifurcations, Driven pendulum and Josephson, junction, Poincare maps, Global bifurcation of cycles, Coupled Oscillators. (L15+T5) Chaos: Lorenz equations: Properties of Lorenz equation, Lorenz Map; One-dimensional map: Fixed points, Logistic map, Liapunov exponent, Fractals: Countable and Uncountable Sets, Cantor Set, Dimension of Self-Similar Fractals, Box dimension, Pointwise and Correlation Dimensions; Strange Attractors: Baker's map, Henon map, Duffing oscillator – nonlinear resonance. (L15+T5)						
Text Book	 Strogatz, S. "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering". CRC Press, 2020. ISBN: 9780738204536 Robert C. Hilborn, "Chaos and nonlinear dynamics: an introduction for scientists and engineers" Oxford Press University 2004 						
Reference Books	 M.W. Hirsch, S. Smale, R. L. Devaney, "Differential Equations, Dynamical Systems & An Introduction to Chaos", Academic Press, 2012 Kathleen Alligood, Tim Sauer, J.A. Yorke," CHAOS: An Introduction to Dynamical Systems" Springer, 2012 John H. Argyris, Gunter Faust, Maria Haase, "An exploration of dynamical systems and chaos: completely revised and enlarged second edition" Springer 2015 						